
International Journal of Management, IT & Engineering
Vol. 14 Issue 12, December 2024,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

44 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

How to achieve Zero-downtime deployments and Graceful shutdown of K8 pods

running on EKS

Jatla.Prasanna Senior Backend Engineer at One Real

Achieving zero-downtime deployments and graceful shutdowns for Kubernetes pods in

Amazon EKS can be a challenge, particularly for Spring Boot applications handling live

traffic through an Ingress load balancer. With CI/CD pipelines and tools like ArgoCD,

deployments are frequent, but poorly managed pod shutdowns can cause issues such as

HTTP 502 errors.

 To understand the reason why this happens, first let's look at the Pod life cycle. When a

rolling deployment starts, new pods get created and once the pod is ready, the old pod

starts terminating. To terminate a pod there are 2 processes that run in parallel.

For an application using Amazon’s Application Load Balancer (ALB) and a NodePort

service, traffic flows through the ALB to nodes and then is routed by kube-proxy using

iptables rules to reach the appropriate pod.

What happens internally at kubernetes control plane level with instance type alb:

1. Kube-apiserver receives the pod deletion request and updates the state of the

pod to Terminating at Etcd;

2. Endpoint Controller deletes the IP of the pod from the Endpoint object; In the

latest versions of kubernetes, a new concept of EndpointSlices was introduced.

3. Kuber-proxy updates the rules of iptables according to the change of the

Endpoint object, and no longer routes traffic to the deleted pod.

4. While all these is happening, Kube-apiserver sends signal to Kubelet to clean

up container-related resources at the node, such as storage, network;

5. Kubelet sends SIGTERM to the container; if there are no configurations for the

process within the container, the container will exit at once.If the container

didn’t exit within the default 30s, Kubelet will send SIGKILL and force it to

exit.

This termination process involves multiple asynchronous steps that can lead to a brief

period where the load balancer tries to route requests to a pod that is already shutting

down. This creates a race condition where kube-proxy might not yet be aware of the

terminated state, leading to temporary connection failures or HTTP 502 errors.

 ISSN: 2249-0558Impact Factor: 7.119

45 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

To overcome this issue, we need to implement below changes:

1. Implement a delay in processing shutdown signals by handling SIGTERM

signals in Spring Boot applications, ensuring all in-flight requests are

completed before termination. In Spring Boot (if using version 2.3 or higher) to

delay shutdown until current requests are complete, set below properties

server.shutdown=graceful

spring.lifecycle.timeout-per-shutdown-phase=20s

2. Add a preStop hook: A preStop hook is a lifecycle hook in Kubernetes that

runs just before Kubernetes sends a SIGTERM signal to terminate the

container. By adding a delay (like a sleep command) in this hook, Kubernetes

effectively "pauses" the termination process, allowing time for other services in

the cluster to be informed about the pod's impending shutdown. The preStop

hook is executed by the Kubelet, which waits until the hook’s commands finish

running before it sends the SIGTERM signal to the container. And another

config that plays a vital role is

terminationGracePeriodSeconds.The terminationGracePeriodSeconds

parameter sets the time (in seconds) that Kubernetes will wait after sending the

SIGTERM signal before it sends a SIGKILL signal to forcibly terminate the pod.

By default, Kubernetes sets this period to 30 seconds. The countdown starts as soon

as SIGTERM is sent. If the application doesn’t shut down within the configured

grace period, Kubernetes issues a SIGKILL, which immediately terminates the

container. The goal is to give the application enough time to finish processing any

remaining requests before it’s forcibly killed. If your application takes, for

example, 30 seconds to handle in-flight requests during a shutdown, you should set

terminationGracePeriodSeconds to 50 seconds to account for the preStop

hook’s sleep period plus any additional processing time.

terminationGracePeriodSeconds: 50

containers:

 - image: {{ .Values.image }}:{{ .Values.version }}

 imagePullPolicy: Always

 name: demo-api

 lifecycle:

 preStop:

 exec:

 command:

 - /bin/sh

 - -c

 - sleep 30

But, even after changing this with our ingress of instance type and service of node-port on

EKS still routing traffic to terminating pod. We resolved this problem by moving to ingress

of ip-type and service of Cluster-type.

 ISSN: 2249-0558Impact Factor: 7.119

46 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

When using an ALB with instance-type configuration, the load balancer targets EC2

instances (nodes) within the EKS cluster, rather than individual pods. In this setup, the

ALB routes traffic to any node in the cluster that can then route requests to the appropriate

pods. Traffic routing depends on kube-proxy, which uses iptables on the nodes to

forward traffic to the correct pod.Where as with IP-type ALB, the load balancer targets the

IP addresses of the pods directly rather than the nodes. This setup allows the ALB to

communicate directly with the running pods.

Kubernetes Service Types: ClusterIP and NodePort

1. ClusterIP:

○ The default service type in Kubernetes, ClusterIP, is internal to the

cluster and provides a stable IP address for pods that can only be

accessed within the cluster.

○ When used with an IP-type ALB, it ensures that only active, healthy

pods are routed to by the load balancer, avoiding issues where requests

reach terminating pods.

2. NodePort:

○ NodePort services expose a port on each node in the cluster, enabling

external access to services running in the cluster by targeting the nodes

directly.

○ Combined with an instance-type ALB, NodePort requires kube-proxy to

handle traffic routing from nodes to pods. This can lead to delays in

updating routing rules during pod terminations, as kube-proxy might

still route traffic to terminating pods, causing temporary errors.

Below is the yaml for our ingress resource for ip-type

kind: Ingress

metadata:

 name: demo-ip-type

 namespace: demo

 annotations:

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/group.name: alb-ip-type

 alb.ingress.kubernetes.io/target-type: ip

 alb.ingress.kubernetes.io/ip-address-type: ipv4

 alb.ingress.kubernetes.io/target-group-attributes:

deregistration_delay.timeout_seconds=30

And service yaml looks like this:

kind: Service

metadata:

 name: demo-api

spec:

 selector:

 app: demo-api

 type: ClusterIP

 ports:

 ISSN: 2249-0558Impact Factor: 7.119

47 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

Our service type needs to be changed to ClusterIP from NodePort. Changing this

configuration creates a new service and a new ALB. Now, when we view this ALB in the

AWS console, we can see pod IP addresses directly in the target group, instead of the

node/instance IPs that were present with the instance-type load balancer. This change

means that the ALB now receives updates from Kubernetes components whenever there

are changes in pod states. The ALB also performs health checks directly on the pods at

regular intervals (as configured). Setting the interval too low, however, can result in all

ALB instances continuously probing all the pods, which can lead to significant processing

overhead for the ALB. We found that the default value of 15 seconds with AWS ALB

worked well for us. With these settings, we were able to achieve truly zero-downtime

deployments.

Why Moving from Instance-Type with NodePort to IP-Type with ClusterIP Helps

Switching to an IP-type ALB with a ClusterIP service improves routing stability during

rolling deployments because:

● Direct Pod Targeting: The ALB communicates directly with the pods,

reducing dependency on kube-proxy for routing updates.

● Quicker Removal of Terminating Pods: The ALB’s awareness of pod

lifecycle events (like terminating status) allows it to quickly stop routing to

terminating pods, lowering the chance of 502 errors.

Using an IP-type ALB with ClusterIP offers a more reliable approach to zero-downtime

deployments, especially when working with frequent updates and traffic-sensitive

applications in Kubernetes.

Another important component that is worth mentioning is the AWS ALB controller. We

have an AWS alb controller running on our kubernetes cluster which is responsible for

creating these ingress resources. It is specifically designed to help manage AWS load

balancers for applications running in Kubernetes clusters on AWS. It automates the

creation and management of Application Load Balancers (ALBs) and Network Load

Balancers (NLBs) in response to Kubernetes Ingress and Service resources, simplifying the

deployment and scaling of services on AWS. When a Kubernetes Ingress resource is

created in an EKS cluster (Elastic Kubernetes Service), the AWS ALB Controller

interprets the Ingress specifications and automatically provisions an ALB or NLB,

according to the configuration. This means that you don’t need to manually set up and

configure load balancers in AWS.

When a Kubernetes Ingress resource is created in an EKS cluster (Elastic Kubernetes

Service), the AWS ALB Controller interprets the Ingress specifications and automatically

provisions an ALB or NLB, according to the configuration. This means that you don’t need

to manually set up and configure load balancers in AWS.

 ISSN: 2249-0558Impact Factor: 7.119

48 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

References

[1]https://aws.github.io/aws-eks-best-

practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle

[2]https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-

amazon-eks-and-prevent-502-error/

[3]https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes

[4]https://cloud.theodo.com/en/blog/application-load-balancer-aws

Author Profile

Prasanna is working as Senior Backend Engineer at OneReal.

Email : Prasanna.webtech93@gmaail.com

https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://aws.github.io/aws-eks-best-practices/networking/loadbalancing/loadbalancing/#availability-and-pod-lifecycle
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://easoncao.com/zero-downtime-deployment-when-using-alb-ingress-controller-on-amazon-eks-and-prevent-502-error/
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://www.thoughtworks.com/en-us/insights/blog/cloud/shutdown-services-kubernetes
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws
https://cloud.theodo.com/en/blog/application-load-balancer-aws

